
Baxter equation for the QCD odderon

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 6423

(http://iopscience.iop.org/0305-4470/28/22/018)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 02:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/22
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


~~ . 
J. Phys. A Math. Gen. 28 (1995) 64236434. Printed in the UK 

Baxter equation for the QCD odderon 
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CEA, Service de Physique lMorique, CE-Saclay, F-91191 Gif-sur-Yvette Cedex, France 

Received 14 July 1995 

Abstract. The Hamiltonian derived by Bartels, Kwiecinski and Pmzalowicz for the study 
of highenergy QCD in the generalized logarithmic approximation was found to correspond 
to the Hamiltonian of an integrable X X X  spin chain. We study the odderon Hamiltonian 
corresponding to three sites by means of the Bethe ansm approach. We rewrite the Baxter 
equation, and consequently the Bethe ansatz equations, as a linear Viangular system. We derive 
a new expression for the eigenvectors and the eigenvalues, and discuss the quantization of the 
wnserved quantities. 

1. Introduction 

The behaviour of hadronic scattering amplitudes at high energies for fixed transferred 
momentum t is, with confinement, one of the most interesting problems to be solved in 
the strong interaction field. 

The discovery of QCD gave us a theory for studying this problem. In the framework 
of perturbative Qm, the resummation of leading logarithmic amplitudes was performed 
[I] and gave the so-called ‘perturbative pomeron’, which violates the Froissart bound [2] 
derived from the analyticity and unitarity of the S-matrix. This is why one needs to take 
into account subleading terms, so as to restore unitarity. 

It is possible to write down an action which takes into account all graphs in the large s 
limit 131; but it is not easy to perform calculations in this framework. It tums out that one 
can consider a subclass of such diagrams where one takes into account only the exchange 
of a fixed number of reggeons in the t-channel, keeping only the dominant contribution at 
each level [4]. This model can be formulated as a Schrodinger equation with a two-body 
interaction Hamiltonian. This Hamiltonian was later shown [5, 61 to belong to the integrable 
hierarchy of Hamiltonians of the Heisenberg X X X  spin-chain with SL(2, @)-spin zero. The 
Bethe ansatz method was then applied in this framework to diagonalize the Hamiltonian. 
In this paper we analyse the Baxter equation and eigenvectors’which arise in this context. 
In section 3 we derive general results for the solution Q. (A) of the Baxter equation for n 
sites and, more particularly, the n = 2 and n = 3 chains. In section 4 we rewrite the Baxter 
equation in a new form, more appropriate to the study of the polynomial solutions; and in 
section 5 we give new expressions for the eigenvectors. 

2. The reggeon Hamiltonian 

After a Fourier transform, in the two-dimensional impact parameter space, the interaction 
Hamiltonian ‘Hj i  between two reggeons becomes the sum of a holomorphic part and its 
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a 
azj zjr = zj - zx Pj = i- 

and y is the Eulei constant. There is also another equivalent form: 

The Hamiltonian (3) and its antiholomorphic counterpart are clearly invariant under the 
conformal transformations [8] 

- -  
with ad - bc =Ed - bF= 1. 

The complete reggeon Hamiltonian is given by 

where the t; are the colour matrices for the jth regeon and cis is the strong coupling 
constant. 

The eigenstates xn.Iql are parametrized by a set of quantum numbers { q )  and the 
additional coordinates (20, TO) which correspond to the centre of mass of the compound 
Reggeon state. In the large-N, limit, one has 

tfi; + -N,  
NC 

t,!'tj + --&,j+~ 2 

for n - 2 

for n > 3 

and 7.1, becomes holomorphically separablet: 

(5) 

One can then look for eigenvectors in the form 

~ n . 1 9 1  (Izj, T ~ I ;  20, TO) = ~ l n . f q ~  ({z~I; TO) ~ n , m  ({EjI; TO) (7) 

Hn%191 %.1~1%191 H n F n , m  = % l ~ l ~ n . . l ~ l .  (8) 

with 
- 

The eigenvectors also satisfy the conformal invariance property [SI 

X",191 (Izj,Tjl;zo,To) -+ Xn.[9l (Iz:.,TjI;zb,&) 
= (CZO +dYh (Eo + qx Xn.rql ({~j, Tjl: ZO, To) (9) 

? For n = 2 and E =  3, as one looks for colour neutral reggeons, expression (2) is exact for any finite N,. This 
is easily derived from the zero charge colour condition z-, = 0 [9]. 
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under the transformations (4). The conformal weights h and 7; correspond to the principal 
series of SL(2, C) [SI: 

- iv l + m  h=- 
2 

with m integer and U real. 
It was shown in [5,6] that Hn is the nearest-neighbour Hamiltonian of the spin zero 

XXX Heisenberg spin-chain with periodic boundary conditions. The spin s generators of 
SL(2, C) at site j are 

- 1 - m  
h = 1 - h* = - - iu 

2 

s-=-aj ~ ? = ~ . a . - ~ .  
J I J  s:' J = zj"aj - zSzj 

The R-matrix of the spin-s XXX~chain acts in the tensor product space h(') @J h"). It is 
given at spectral parameter A, by [lo]: 

where the Casimir operator J12 satisfies the relation 

JlZ(J12 + 1) = (SI -!- Sd2 = 251 .s2 + 2r(s -!- 1). 

@)Ih=o 

(11) 
One then has 

(12) 

as can be seen from the representation (3).  the^ matrix R@)(A) satisfies the Yang-Baxter 
equation. This implies that 

d H. - -i- log R!"'' 
Jk  - j k  

belongs to an infinite set of conserved quantities 
dk 

dhk 
tk = 4- log R('=O) (h)l,,o k = 0, 1,2, . . . . (14) 

These quantities are simultaneously diagonalized by means of the algebraic Bethe ansatz. 
In this approach one defines the Lax operators 

and the monodromy and transfer matrices: 

A(A) = trT,(A) =-A@) + D(h) 

The conserved quantities 

commute with the operators t k  because of the Yang-Baxter equation. One obtains 

A(A) = ZA" Jr &A"-' -!- &An-3 -!- . . . +& 
where 
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In particular we have the CasimG operator of the conformal algebra: 

Z Maassarani and S Wallon 

aZ = zjkajak 2 =Ls3s3~- i(s+s- + s-s+) E -h(h - 1). 
n>j>k>I 

A set of simultaneous eigenvectors of the @k is also a set of simultaneous eigenvectors 
of the %. Such vectors are then given by the algebraic Bethe ansatz approach. A subclass 
can be written as 

The appearance of the E-operators for spin -1 is due to the existence of a trivial highest- 
weight vector for the spin 0 chain. The spin -1 chain is related b a similarity transformation 
to the spin 0 chain. In particular the eigenvalues qf=O) and qf=-6 are equal. The parameters 
[hi} satisfy the Bethe ansatz equations for spin -1: 

The eigenvalues are given by 

In fact it is possible to reformulate equations (17), (18) and (16) as 

(A)Q.(A) = (A+i)"Q.(h+i)+(A-i)"Q,(A-i) A($=-l) 

1 ~2;:; ( [ z j } ; O )  = z ~ z z ~ . . . z ~ ~ ( i ~ - ) ~ - " Q " ( x l ) ~ . ~ Q ~ ( x ~ - ~ ) ~  . (21) 
Zl...Z," 

Equation (19) is the eigenvalue versionof the Baxter equation; A(s'-')(h) and Q,(A) stand 
for the operators and their eigenvalues. In this approach one looks for a solution Q2,(h) 
analytical in @. In (21), ( X I , .  . . , xn-l) ire operators such that 

n 
E(Q = iS-(h - X I ) .  . . (A - ~ ~ - 1 )  S- = - ai. 

j=l 

For a polynomial solution Q.(A) = &(A - hj) of the Baxter equation we obtain 
equations (16), (17) and (18). Thus the system (19)-(21) gives a larger class of solutions 
than the class of polynomial solutions. 

We conclude by rewriting the conformal invariance property using the generators S*, S' 
of the whole chain, for spin 0 

and similarly with antiholomorphic operators. This can be rewritten as 
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Therefore ( -h)  can be identified as the total spin of the vector xn.(,,l and one must also 
have -h = -In - p .  and thus p = h - n. This implies h = n, n + 1 ,  . . . for the polynomial 
solutions. There is also a h + 1 - h symmetry in the problem which allows us to consider 
only Re h > f . 

3. The general solution of the Baxter equation 

Following [6,10] we set 

where the closed path C encircling the two points 0 and 1 counterclockwise is such that the 
integrand is uniform. The Baxter equation becomes an nth-order differential equation for 
d.(z): 

This is a Fuchsian differential equation with three regular singular points, z = 0, 1 and cc 
[Ill. The indicia1 equations for these singulcr points are 

s " = O  f o r z = O a n d z = l  
~ ( ~ - 1 ) . . . ( s - n + 3 ) [ ( ~ - n + + ) ( s - n + l ) + q z ] = 0  f o r z = w .  

One can then look for logarithm-free solutions in the form of an entire series around 
any of the three singular points. We consider a series expansion around the point z = 0 of 
the form 

(24) 

It is then easy to see that the sequence (at]  will satisfy an n-term linear recurrence relation 
of the form 

&(z)  = C.kZ k 

k>O 

z a k + i  pi(k + i) = 0 (25) 
i=O 

where 

pn-l (k )  = k" 
and for all i, pi(k) is a polynomial of degree n in k with a linear dependence on the 
parameters (qk}- 

Expansions around z = 1 and z = 00 lead to similar recurrence relations. An expansion 
on the basis of the Legendre polynomials was considered in [9,12]. 

Deforming the integration contow in equation (274 one can rewrite Q,(A) as 

po(k) = k(k + 1 ) .  . (k + II - 3)( (k +'n - 2)(k + n - 1) 4- q2) 

Plugging the series expansion (24) into equation (26) one obtains 

Thus a polynomial solution of degree p in z of the differential equation (23) yields a 
polynomial solution, of degree p - I in A, to the Baxter equation. It is possible to verify 
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directly that, at least for the first few values of n,  expression (27) provides a solution of the 
Baxter equation if recurrence (25) is satisfied. To do so one just expands the polynomials 
A i  and (A+ i)" in a way which is compatible with an expansion over the basis provided by 

Z Maassaruni and S Wallon 

k-1  

Po@) = 1 Pk(A) = n(l- iA) k = 1,2, .  . . . 
1 4  

We'note here that for any periodic function f of A with period i, one can define a new 
solution of the Baxter equation by multiplying any solution with f(A).  

We now briefly address the issue of the convergence of a series of the type (27). For 
n = 2 the solution recessive at 0 of the differential equation (23) is the hypergeometric 
function 

Qz(z) = zFi(h,  1 - h; 1; z) 

for h Z. For k large, a k  - f + 0 (b) and the series (27) converges absolutely and 
uniformly for Im A < 0, where Q2(A) is therefore analytical. The Baxter equation allows 
us to extend analytically Qz(A) to C\iN. 

There is generically an infinite~number of poles at the points 0, i, 2i, . . .. By calculating 

Qz(A - i)(2(A- i)' + q 2 )  - Qz(A - 2i)(h - 2i)' 

and its derivative at A = 0, with the help of the recurrence relation, we find that the pole at 
0 is simple with residue -i/(h - I) !(-h)!.  The Baxter equation implies then the existence 
of other simple poles at i, 2i,. . . 

We also found numerically that Ql(A) increases exponentially as A + -icc for h = 
and h = 5; we believe that this is the case for generic values of h. If one assumes 
Qz(A) - Am as A tends to rea[ infinity then the Baxter equation implies that (Y = h - 2t. 
Numerical trials confirm this assumption. 

The other solution of the differential equation, &(h, 1 - h;  1; 1 - z), gives the series 
e*(-).) which is therefore also a solution of the Baxter equation with the same value of 
q2. One way to construct a solution of the Baxter equation analytical in C is to consider 

sinh(2~W(ci Qz(V + czQd-AN 

for any values of CI and c2. The behaviour of this analytical solution at real infinity is not 
likely to be Ah-' however. In this respect we seem to disagree with the results of [6,9]. 

We now consider n = 3, the first 'non-trivial' case. The recurrence (25) becomes 

Uk+z(k + a3 - ak+~[iqa + (k + I)(qz + (2k + 3)(k + 2111 + apk((k + l)(k + 2) + 42) = 0 
f o r k = - I , O , l  ,..., withu-l-O. (28) 

It does not seem possible to find an explicit solution to this recurrence. However, because 
the indicia1 equations at zo = 0 and zo = 1 are s3 = 0, the general solution of the differential 
equation around these points is of the type f l  (z) + f d z )  log(z - 20) + f3(z) log2(z - ZO) 
where fi(z) are regular functions at z = ZO. The only possible singularities of the solutions 
are the three singular points. Thus z = 1 is the only singularity on the circle of radius one 
of the solution (24). The logarithmic behaviour of the solution around one implies then, 
using the Darboux theorem, the following behaviour of ak as k tends to infinity: 

t Note however, that an analytical function in a2 cannot have a branch-type SingulJrity of the form Ahh"(h $ Z) 
35 h tends to complex infinity. 
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From the.recurrence equation, it is possible to find relations between the coefficients 
appearing in (29). Numerical trials confinn this logarithmic behaviour for kuk as k becomes 
large. Such a behaviour allowed us to  show that Tor Jinh < 0 the series (27) converges 
uniformly. One then extends this solution analytically to almost all the complex plane 
through the Baxter equation. Again, proceeding similarly to the n = 2 cdculation, the 
points iN turn out to be poles. They are of order two. For instance we find for A near 0 

For the solution Q3j4,,q3,1(h) just defined one then considers the function Q3(q2,-q3,(-A). 
This is also a solution of the Baxter equation with (42.43) as parameters and 

sinh2(2rJ.)(c~ Q 3 h  q31W + c z Q 3 h 1  -qd( -A) )  (30) 
is also a solution,. which is analytical in C. The behaviour at infinity is not likely to be 
simple. 

For any given value of a, one can, in principle, repeat the same analysis and expect to 
find poles of order n - I at iN for the analytically extended series solution. The approach 
of [I31 to constructing solutions of the Baxter equation of the Toda chain with,a given 
behaviour at infinity can also be tried. We are investigating this possibility. 

4. Polynomial solutions of the Baxter equation 

Polynomial solutions to the Baxter equation provide a subclass of eigenvectors of the 
operators &, @3 and H,. 

It is possible to obtain polynomial solutions from the series (27) by requiring the 
sequence (uk} to truncate. For-a polynomial of degree p it is necessary to have up+i = 0 
for all i 2 2. However, for a given n, the sequence satisfies the n-term recurrence relation 
(25) and it is enough to require 

a,,+, f 0 and ap+2 = ap+3 = . . . = a  p+" = 0. 

These relations are enough to quantize the eigenvalues 42, . . . , qo. For instance setting 
k = p + 1 in (25) one obtains 

42 = - (p+n) (p  + n  - 1) = -2 (31) 

Writing q2 = -h(h- 1) gives h = p+n as was found in [6,9]. The conditions on 43, . , . , qn 
are given by the roots of a coupled system of polynomial equations in the variables qi. For 
n = 3 the discretized values of 43 are given by the roots of a degree p + 1 polynomialt. It 
turns out that all the roots seem to be real, in accordance with the results of [6,9]. 

We now derive equations for the invariants of polynomial solutions to the Baxter 
equation. Let 

Uy(X,)_=-uy(X~, ..., X , ) ~  x,, ... x, q =  1, .... p (32) 

U ~ ( X , )  1 (33) 
i<_r,<Q< ... <r"<p 

be the elementary symmetric polynomials. The polynomials uq(Xi) satisfy the relations 

1 MATH~MATICA and MAPLE give exact roofs up lo h = 15, and fail orhenvise 
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A polynomial solution of the Baxter equation, whose roots therefore satisfy the 
Bethe ansatz equations, can be written: 

P P 
Q,(A) = n(A - A j )  = ~ ~ ( - l ) p - ’ o p - j A j  

j=l j=O 

where 

We then rewrite the Baxter equation as a set of equations: 

0 < m 6 p f n  - 2  c n + 2  =. . .= U-] = 0 
uo = 1 

where [XI is the integer part of x .  The p equations, m = I , .  . . , p .  give a triangular 
linear system, with parameters (43, . . . , qn), for the unknowns (q, ..., up). The equation 
m = p + n - 2 gives, as expected, equation (31). The n - 2 remaining equations, m = 0 
and m = p + 1, . , . , p + n - 3, give the quantization conditions, once the uk are solved for 
as polynomials in the parameters ( q 3 , .  . . , q J .  

For n = 2, we get that the polynomial Q2(A) is even (odd) for p even (odd). For n = 3, 
the quantization condition for 93 can be written as a vanishing determinant of a matrix with 
a lower triangular part and one non-vanishing line above the diagonal, once uo is introduced 
in the set of unknownst. 

UP+] = . . . = u,,+~-z = 0 

The energy E, of the Hamiltonian (13) can be rewritten as follows: 

One can then use relation (34) to rewrite E, in terms of the Uk. Equations (35) provide a 
new way for looking at the Bethe ansatz equations. It is also possible to obtain similar 
equations for any spin s, not just the case s = -1 under consideration. 

5. A new expression for the eigenvectors 

In the framework of the algebraic Bethe ansatz, the eigenvectors are obtained as the repeated 
action of a ‘lowering’ operator B(h) on a highest weight state, or pseudo-vaccum state, as 
in equations (16) and (21). However, both expressions are unwieldy as the number of Bethe 
ansatz roots increases, or for non-integer values of h. We now develop compact expressions 
for the eigenvectors as linear combinations of eigenvectors of the operator 42. 

Define the vectors 

(39) ut-h a?-h q - h  01) q ez ~~pu,.u,.u,fzI. ZZ, 23) = z ,  22 z, 2>22.23z,, 

t We checked using MATHEMATICA that, for p up to 15, the values of y3 coincide with those obtained from the 
recurrence relation for n = 3. 
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where 

~ l i , ~ r z , ~ r s ,  E C 011 + n z  + L Y ~  = h.  (40) 

In what follows we always assume (40) to hold. The form of the vector v,,,,,,,,(zI. Z Z ,  z3) 
is suggestive of a generalization of the pomeron (n = 2) eigenvectors: 

~~ 

One can directly verify that the functions (39) satisfy the conformal invariance property (S), 
or by viewing it as a four-point function of a conformally invariant theory [14]. Such four- 
point functions were considered hy Lipatov in a different approach 181. These functions are 
eigenvectors of 

3 

42 = Cz:+,ajaj+, 
,=I 

with eigenvalues -h(h - 1). One also has the linear dependence relations 

vu, -l,c*+l,.p ( Z i )  + Pa,-l,w*,,73+l (Zi) = -Pm,,u*.aa(Zi) (42)  

with two other equivalent relations where 011 - 1 + (YZ - 1 or CLI - 1 -F 013 - 1. Other 
more complicated relations exist. Note that (42) is satisfied without the constraint (40). 

The action of 4 3  on 'pn,,nz,a2(zj) is a tedious but straightforward calculation. We obtain 
... 
1q3Vq,q,a5(Zi)  = (a3ffZ(ffZ - 1 )  +ffZff l ( '% - 1) +fflul(ff3 - 1 ) ) % 1 , o , , a , f Z i )  

-~1(a1 - 1)(011 - h)Vm,-1,w2+1,mS(Zi) - ~ z ( Q  7 ~)(uz - h ) ~ w , a p ~ , e ~ + ~ ( z i )  
-%(a3 - - h)Vw+l.u~.cr-l(Zi). (43) 

The action of 4 3  is that of a step operator. It is therefore natural to look for simultaneous 
eigenvectors of 4 2  and 4 3  (and therefore of H I )  as linear combinations of the eigenvectors 
of G2, that is, as a kind of coherent state. 

The eigenvalues  of^ 4 2  are highly degenerate; for a fixed value of h,  two complex 
parameters label this~degeneracy. In order to control such degeneracy, we first consider the 
plane determined by (40) in C3, and fix a point (al, 012, a3) in it. The set 

Vu,  .oli+m.ar-m ' p a l  -n.or,.Cr,+n v ~ , + ~ . ~ ~ - ~ . ~ ~  m,  n, P E 

is a basis for the space 

v ~ , + ~ . . ~ + ~ . ~ ~ + ~  m. n,  P E z m + n + P = 0. 

This space can be represented as shown in figure 1, where the vertices correspond to the 
foregoing vectors. The vertices on the three full lines are the basis vectors. The triangle in 
bold lines represents a three-term linear dependence relation of the kind (42). This diagram 
is reminiscent of the sL(3) weight lattice. 

We can then look for eigenvectors of 4 3  as a linear combination of basis vectors, 

Cn(z i )  = amPo,,uz+m.a,-ci + C b n V q - n , u i . c i + n  + C ~ p 9 = 1 + p . a r - p . a 3 .  
m>0 0 0  P>O 

Requiring @,(z;) to be an eigenvector of 4 3  gives a complicated set of coupled recurrence 
relations with an infinite number of terms. To obtain a more manageable set of relations we 
restricted the~point (011. ai, 013) to one of the three points (h ,  0, 0), (0, h,  0) and (0, 0, h) .  
The recurrence relations then decouple and become three-term recurrence relations of the 
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Figure 1. Visualization of the space with origin (cl, a*, c2). represented as (0, 0.0). 

type already encountered in section 3. We now give these relations for the point (h ,  0,O). 
We note that for integer h it is enough to consider this point. Consider the vector 

We have not considered the three m = 0 terms in this sum because such terms are in the 
kernel of $3 and we are interested in non-vanishing eigenvalues. The action of $3 on (44) 
is easy to obtain from (43). We get three uncoupled recurrence relations for the coefficients 
in the sum which means that one can consider each sum by itself a s  an eigenvector. The 
recurrence equations are: 

(m + ~ ) m ( m  + 1 - h)a,+l + (iq3 + m(2m2 - h(h - l)))a, 

(m + l)m(m + 1 - h)b,+~ + (iq3 + mfm - h)(2m - h))b, 

(m + I)(m + 1 + h)(m + h)c,+~ + (i43 + m(m+ h)(2m + h))c,  

+m(m - I)(m + h - I)U,-I = 0 

+(m - I)(m - h)(m - 1 - h)bm-l = 0 

+m(m - l ) (m - 1 + h)c,-, = 0. 

(45) 

(46) 

(47) 

These recurrence relations are different from equation (28) but of the same type. Polynomial 
solutions of the Baxter equation correspond to finite sums in (44). For instance, the solutions 
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with spin -1 generators. 
Equation (49) is obtained from equation (48) by using the relations (42). It is also 

obtained from (44) and the recurrence relation (46). More generally, the relations (43547) 
can be truncated to a finite number of terms by requiring h = -no for (45) and (47), 
h =no + 1 for (46) (q2 = -h(h - 1) = -no(no f 1) for the three cases), and the relations 
for n = no to hold. We verified that the discretized values of q2 and q3 we obtain are the 
same as the values we found in sections 3 and 4, for many values of h. We also found an 
additional 4 3  = 0 solution for the recurrences (45) and (46). 

Eigenvectors common to & and and with vanishing eigenvalue q 3  are just linear 
combinations of pomeron eigenvectors. This becomes clear if one solves the partial 
differential equation 

G ~ ( P  = i ~ ~ ~ ~ ~ ~ ~ ~ a ~ a z a 3 ( ~  = o 
It implies that ( ~ ( z j )  is a sum of three functions which depends on only two of the three 
variables (ZI. ~2~2.3). For instance one has 

(Ph.O.O(Zl0, 2202 Z30) = Olh(Z21 23; ZO) (Olll(Zi0) = $((Pm3 + %30 f % d ( Z i O ) .  

The action of H 3  on rp4,=o is straightforward because of the foregoing remarks: 

H3(0,=0 = H2(qz)(P*=o. 

However, the action of H3 on (pq,+0 is not simple. For polynomial solutions, corresponding 
to truncated sums in (44), we obtain the eigenvalue of H 3  from (36), (37) or (38). 

Ansatz (44) covers all the polynomial solution class of the Baxter equation. We also 
believe it provides a space rich enough to cover most of the non-polynomial solutions we 
are interested in. 

An extension of the foregoing approach to a chain with four sites and larger sizes can 
be considered. For four sites, the 'elementary' functions, which are eigenvectors of 6 2  with 
eigenvalue q 2  = -h(h - l), are: 

with 

h =f f l2  + a13 + 0114 f a 2 3  + 0124 + a 3 4  

011 = h - 01z - 0124 - 0134 

013 = h - 0112 - a 1 4  - a24 

012 = h - a13 - a14 - 0134 

014 = h - - 0113 - 01z. 
The actions of @3 and can be calculated, and these operators are then seen to act as step 
operators. One can then take an ansatz for the eigenvectors and find the recurrence relations 
for the coefficients. The generalization of the elementary functions (50) to larger chains is 
straightforward. 

6. Conclusion 

The determination of the ground state of the Hamiltonian ffn for n 2 3 is still an open 
problem. In this paper we analysed the Baxter equation connected with the diagonalization. 
Common features emerged such as the series solutions and the n-term recurrence associated 
with them. It seems impossible to reduce such recurrences to simpler ones. Such recurrence 
relations emerged again when we looked for a simple form for the eigenvectors. We also 
recast the Baxter equation as a linear system suitable for the search for polynomial solutions. 
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